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Abstract The critical behaviour of a magnetic superlattice is emmined within the framework 
of the effective-field theory with wrrelations. For a spin-f Ising model of a superlanice with 
arbitrary number of magnetic layers in a unit cell we obtain the general formalism of transition 
temperahue T. derivation. For the case of an a l t e m h g  superlanice, the h s i t i o n  temperatires 
T, are calculated as a function of the film f h i c k  and of the inter- and intralayer exchange 
wnstauts. The effects of surface modification on finite superlattices are also sNdied numerically. 

1. Introduction 

In the past few years, there has been growing interest in the magnetic properties of both 
naturally and artificially layered structures, especially in the nature of spin waves, giant 
magnetoresistance and critical phenomena (for a review, see 111). With the advance of 
modem vacuum science, in particular the epitaxial growth technique, it is now possible to 
grow very thii films of predetemined thickness, even of a few monolayers. Superlattice 
structures composed of two different ferromagnetic layers (FelCo, FeICr, F e N ,  CoICr, 
DyIGd, etc) have already been artificially fabricated. The critical properties of such systems 
have been studied, either experimentally p-51 or theoretically [6-12]. Camley and Tilley [8] 
have calculated the critical temperature in the same superlattice using the Ginzburg-Landau 
formalism. Hichey and Mills [6] have used a localized spin model in the investigation of a 
superlattice composed of alternating ferromagnetic and antiferromagnetic layers. Recently 
Sy and Ow [lo] studied the phase transitions in an alternating magnetic superlattice using 
the king model in the mean-field approximation. 

We study in this article the critical properties of a magnetic superlattice using the 
differential operator technique within the effectivefield theory with correlations. This 
technique, first proposed by Honmura and Kaneyoshi [13], has been widely developed and 
applied to various magnetic systems [14], including thin films and superlattices [15-18], and 
it is believed to give more exact results compared to the standard mean-field approximation. 
So, recently, using this method Hai et al studied the critical temperature of a magnetic 
slab as a function of slab thickness and surface exchange coupling [161, and the critical 
behaviour of an infinite superlattice consisting of two different ferromagnets 1171. 

In section 2 we present the model of the superlattice and derive the equation that 
determines the transition temperature. In section 3 we apply the obtained formalism to 
calculate the transition temperatures of an alternating superlattice with two iayers in the unit 
cell. We consider fist an infinite superlattice, then a finite one and last a finite superlattice 
with modified surface. Finally, the discussion and brief conclusion are given in section 4. 
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2. Model and formalism 

We consider a model of an infinite superlattice with the unit cell consisting of an arbitrary 
number N of magnetic layers. Each magnetic layer j ( j  = 1, . . . , N) contains nj atomic 
layers. The same model of a magnetic superlattice was considered recently [12,19] for 
study of the bulk and surface spin-wave spectrum. The unit cell of the superlattice under 
consideration is shown in figure 1. 
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- 2  
Figure 1. The unit cell of the superlattice consisting of N different ferromagnetic materials. 
The same lattice parameter a is assumed for all the materials and I = La is the superlattice 
parameter. The layers are infinite in the d d o n s  perpendicular to the axis L. 

The spin-$ king Hamiltonian of the system is given by 

where S,,, = f l  is the usual king variable, (n, n') are plane indices and (r, r') are different 
sites of the plane. We will retain only nearest-neighbour (NN) terms. In (1). .Inn, is only 
plane dependent, and in NN terms is given as 

for j = 1, . . . , N .  Here L is the number of atomic layers in the unit cell and is defined as 
L = n j ,  k is the index of the unit cell (k = 0, H ,  zk2, . . . for an infinite system) and 
j + 1 +  1 for j = N. 

To evaluate the mean spin (Snp) we use the exact Callen identity [ZO]: 

where Kij = Jij/kBT, and (. . .) indicates the usual canonical ensemble average for a given 
configuration of ( J i j ] .  For derivation of the right-hand side of expression (2) we use the 
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differential operator technique [13]. Now we introduce the differential operator D s a/ax 
and recall that the displacement operator exp(0rD) satisfies the relation 

exp(orD)f(x) = f(x +CY). (3) 

Then equation (2) can be rewritten with the help of equation (3) as 

On the right-hand side of equation (4) we have obtained the multi-spin correlation function, 
which must be decoupled. We follow the Kaneyoshi decoupling approximation 1211 

(XIXZ ... xn) = (Xl)(XZ) ... (XJ. 
Then, as (Snr) is independent of r ,  we introduce the mean atomic magnetization of the 

nth layer m, = (&). Hence equation (4) in NN approximation and in terms of m, reduces 
to 

m. = [cosh(K.,D) + m. sinh(K,.D)llo[cosh(K,,,-1D) + m,-l sinh(Kn,,,-lD)]* 

x [coshWn,+1D) + mn+l sinh(K,,,+~D)I' tanh(x)lx,o (5) 

where n = 1, . . . , L, and zo and z are the numbers of nearest neighbours in the plane and 
between adjacent planes, respectively (zo = 4, z = 1 in the case of a simple cubic lattice; 
zo = 6, z = 1 for a hexagonal lattice; zo = 3, z = 1 for a honeycomb lattice; etc). Since 
the periodic condition of the superlattice is satisfied, we have mo = mL and mL+l = ml. 
So we have a set of L coupled equations for ml, mz, . . . , mL. The magnetization in the nth 
layer, m,, depends on the magnetizations in adjacent (n + 1)th and (n - 1)th layers and via 
these on exchange couplings in these layers. We can see that, in general, owing to interface 
effects, the magnetizations in nj atomic layers of magnetic layer j are not the same. 

As the temperature becomes higher than the critical temperature Tc, the whole system 
becomes demagnetized and the mean atomic magnetization in every layer approaches zero. 
Using this condition we can determine T,. Hence, all terms of order higher than linear in 
equation (5) can be neglected. This leads to a set of L linear simultaneous equations: 

m. = zoA,,m, + zAn.n-lmn-l + zAn.n+lmn+l (6) 

where n = 1, . . . , L, and coefficients ( A ]  are given by 

A., = coshz0-'(Kn.D) sinh(K,,D) coshz(Kn,n-lD) coshi(Kn,.-lD) tanh(x)l,=o (74 

(7b) 

= coshz-l(K,,,n+lD) sinh(Kn,n+lD) cosh*(K,D) coshE(Kn,.-lD) tanh(x)lx,o (7c). 

A...-1 = cosh 2-1 (&-ID) sinh(K,,.-lD) coshzn(KnnD) cosh'(K,,,,+iD) tanh(x)lr,o 

The set of linear equations (6) can be rewritten in matrix form: 

Bm=O (8) 
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where 
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Bij = ( 1  -zoAij)Sij -zAii(&.j-i + & , j + i ) .  

The secular equation of the set of coupled equations (6) is 

... 1 - ZoAii -zAiz - z A i ~  ... ... -2Azi 1 - Z O A ~  
... ... ... ... 
... ... 1 - ZOAL-LL-I -ZAL-I,L 

-ZALI -zAL.L-~ 1 -ZALL . . . . .  
= 0. (10) 

From the numerical calculation of equation (10) we can determine the critical temperature 
T, for a given configuration of exchange constants [ J i j }  and superlattice structure (20, z). 
Thus the formalism we have obtained is general and applicable for an arbitrary superlattice. 

3. Superlattice with two layers in the unit cell 

3.1. Infinite lanice 

Now let us apply the obtained formalism to a superlattice where the adjacent layers consist 
of atoms of two different magnetic materials A and B and alternate as ... ABABA.. .. The 
exchange coupling constant between the NN spins in A (B) is denoted by Ja (Jb), while Jab 
stands for the exchange coupling between the NN spins across the interface. Let us assume 
that the superlattice is infinite and has a simple cubic structure (zo = 4, z = 1). Since the 
unit cell includes only two layers, we have two different mean magnetizations, ma for layers 
A and mb for layers B. Evidently, for arbitrary n, the relation = m.+l is satisfied. 
Hence the set of equations (6) has the form 
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From the numerical calculation of secular equation (13) we can determine the critical 
temperature of the infinite alternating superlattice as a function of Ja. Jb and Jab. Let 
us assume that Ja 2 Jb and hence c(a) > c@), where T,) = 5.073J,/kB is the bulk critical 
temperature of a uniform lattice of material A and T," = (Jb/J,)T,(". Then we take Ja 
as the unit of energy. In figure 2 we show the dependence of the critical temperature 
T, on interlayer exchange constant J* for various values of Jb. It is easy to see that 
this dependence is approximately linear in agreement with results of other methods 19- 
111. It is interesting to note that, for every choice of J, and Jb, there exists some critical 
value of interface exchange constant -7,"' such that, when Jab =. and consequently 

> q(a). q@), the system may order in the interface layers before the intralayer ordering, 
i.e. the interface magnetism dominates. For Jab < .I::), Tc i TF), T,", we 'have the 
contrary situation. Initially it has a place intralayer ordering, i.e. the intralayer magnetism 
dominates and the system behaves like metamagnets. For the plots in figure 2 we obtained 
the following critical values of J::): for (a) Jb = 0.253, and J:) = 1.335,; for e) 
Jb = 0.5.7, and J i )  = 1.22Ja; for (C) Jb = 0.755, and J::) = 1.11J.; for (d) Jb = J. and 
J i i )  = Ja. Recently Hai et a1 [I71 considered a similar model of an infinite superlattice 
consisting of two different ferromagnetic materials A and B, where each magnetic sublayer 
contained several monolayers, and calculated the critical temperature as a function of 
sublayer thicknesses. It was found also that there exists for each set of values of Ja, Jb and 
number of layers some critical interface coupling JJ:) that satisfies the same conditions as 
J,") introduced in the present work. 

3.2. Finite lattice 

Now we consider an alternating superlattice of finite thickness. In the case of the infinite 
superlattice we restricted our discussion to one unit cell because of the periodic condition. 
Now, taking into account the effects of finite thickness of our superlattice, we have to 
consider all unit cells, because the periodicity is broken on the surface layers. 

Let us assume that the lattice has 2l layers. Layers n = 0,2, . . . , U -  2 are made up 
of atoms of type A with .Ia, whereas layers n = 1,3,  . . . ,21- 1 are made up of atoms of 
type B with Jb. The exchange constant between all successive layers is given by Jab. Such 
a type of superlattice was considered recently [lo] in the mean-field approximation. 

Therefore matrix equation (8) can be performed now as a set of 21 linear equations, 
and m has 21 components, i.e. 1 mean magnetizations ma and 1 mean magnetizations mb. 
Matrix B will have the form 

1 - Z o A a  -Z&b ] (14) 
-2Aba 1-ZoAbb -ZAh ... ... ... 

... ... ... 
-Z& 1 - ZoAbb 

(15) 

i~ Bcab) = 

and the critical temperature T, is given as before by the determinant equation: 

det B(*) = 0. 

We can represent det B(h) as 
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Figure 2. Dependence of critical temperature T. on interface coupling Jab for (a) 3b = 0.253,, 
(b) Jb = 0.5.L (e) Jb = 0.753, and (d) Jb = 3.. The broken line shows the crit ical temperahlre 
of a uniform lattice. hT. = 5.073, i.e. when Jb = 3. and Jab = Ja. 

where 

x, -1 
-1 X b  -1 .=[ -1 ... x, -1 ... ] 

-1 (U)X(U) 

(17) 

and 

Xa = (1 - ZoAaa)/(ZAd xb = (1 - ZOAbb)/(ZAba) (18) 

where {A) are given in (12). 

satisfies the recurrence relation 
Now let us evaluate CU. The determinant of such a symmetric tridiagonal matrix 

cu = (X& - 2)cu-2 - cu-4 (19 
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and this difference equation has a solution [lo]: 

Cu = (l/sinh+){sinh[(l + I)+] + sinh(l@)} (20) 

where 

X& - 2  = 2CoSh4. (21) 

If X& c 2 then @ = i8 and hyperbolic functions become trigonometric functions of 8. 
According to (15) and (16) the critical temperature is given by: 

CU(T) = 0. (22) 

This equation has no solution for X&, z 2. For X,Xb < 2 the solution is 8 = 2n/(Zl+ 1) 
and we have 

X,Xb - 2 = 2cos[2r/(2E + l)]. (23) 

From this equation we can obtain the dependence of critical temperature Tc on 
superlatticx thickness (thickness is measured in units of the lattice constant in our 
calculations). Such dependence is shown in figure 3 for simple cubic structure and for 

for 1 + CO, T, approaches the bulk critical temperature of the infinite superlattice. Notice 
that the bulk values of !q+G/Ja, i.e. (a) 3.84 and @) 6.03, are reached very rapidly with 
small I ,  and curve (a) approaches its limiting value faster than curve (b). It is easy to see 
also that for E + do (infinite lattice) equation (23) is equivalent to equation (13). 

3.3. Finite lotrice with modified su~ace  layers 

Finally, let us consider a finite lattice when the magnetic properties of the surface differ 
from those in the bulk This is expected since the atoms at the surface are in a different 
environment, and the interaction (exchange constants) associated with them may differ 
from those in the bulk. The effects of surface magnetism have been the subject of many 
investigations (for a review, see [22]) in recent years. 

We consider the simplest model of surface modification. Let us assume that only for the 
first surface (top and bottom) layers the exchange constant differs from that in the bulk, i.e. 
for n = 0 we have Jo # Ja and for n = 21-1 we have Jm # Jb; layers n = 2.4,. . . ,21-2 
are composed of atoms A with J., and layers n = 1.3, . . . ,21-  3 are composed of atoms 
B with Jb. The exchange constant between all successive layers is given by Jab. 

tWO Cases: Jb = 0.5Ja, Jab = O.sJ,, and Jb = 0.5Ja, Ja = 23,. h figure 3 W e  Cm See that, 

In this case equation (16) has the form 

(24) det BE) = (zA&)'(zAab) C,  ($1 ( T ) 

where 

xo -1 
-1 Xb -1 

-1 x, -1 ... ... 
-1 XW 
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Figure 3. Dependence of critical temperature T, on thickness for (a) Jb = 0.5Ja, Jab = 2Jn, 
and (b) Jb = o.5Ja, Jb = 05Jz,. 

and where xo and xw differ from xa and xb by putting JO instead of Ja and Jm instead of 
Jb, respectively, in expressions (12 

Expanding the determinant C$?about the first and last rows we can write 

where CZJ is given in (20). 
From the condition of critical temperature derivation 

C$)(T) = 0 (27) 

we can numerically calculate Tc for various values of J., Jbr Jab, JO and Jm and the number 
of layers U .  For simplicity we have chosen 

Jo = CJ. Jm = CJb (28) 

where c is the single modification parameter (c = 1 is our simple altemating superlattice). 
In figures 4 and 5 we have plotted critical temperature T, versus c for two cases: 

Jb = O N , ,  Jab = OSJ,, and Jb = OS&, Jab = 23,. respectively. The results are shown 
for simple cubic structure and for various numbers of layers. Notice that the dependence 
of T, on the layer thickness is significant only for small c. 
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Figure 4. Dependence of critical temperature 7, on c for 3, = OSJ., J& = O.% and for 
(a) six, CO) ten and (c) an infinite number of layen. 

4. Conclusion 

We have examined a spin-; king model of a magnetic superlattice. The formalism of 
transition temperature derivation obtained above is universal and can be used for study of 
a superlattice of various thicknesses and smctures. The authors are presently workmg on 
extension and application of this formalism to more complicated models: a superlattice with 
several monolayers in a magnetic layer, a superlattice with impurity layers, a superlattice 
in transverse applied field, and so on. The more complex the model, $e more complicated 
are the computer calculations required. 

Although we have considered a superlattice with only ferromagnetic exchange (all 
J > 0), the formulation is also applicable for antiferromagnetic coupling (some or all 
J < 0). It is easy to see, for example, that, if exchange interactions between the successive 
layers are antiferromagnetic (i.e. we have to replace &b by - K h  in expressions (15)), the 
values of Tc are not changed, which is consistent with the discussion in [9]. 

In this paper we also introduce some critical value of interlayer exchange constant JJi) 
so that for J~ > J::) (Jab < ~2) )  the interlayer (intralayer) ordering dominates. 

Although superlattices of altemating magnetic monolayers have not been studied 
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Figure 5. Dependence of uifical temperature G on c for Jb =0.5Ja, J h  = 25, and for (a) six. 
(b) ten and (c) an in6nite number of layers. 

experimentally yet, it is expected that such system can be fabricated in the near future, and 
a possible candidate is a smcture with altemating Fe and CO monolayers. Investigation 
of the transition temperatures on magnetic superlattices in which the atoms vary kom one 
monolayer to another will be most useful and enlightening. 
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