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Abstract. The critical behaviour of a magnetic superlattice is examined within the framework
of the effective-field theory with correlations. For a spin-% Ising model of a superlattice with
arbitrary number of magnetic layers in a unit cell we obtain the general formalism of transition
temperature T derivation. For the case of an altemmating supetlattice, the transition temperatures
T: are calculated as a function of the film thickness and of the inter- and intralayer exchange
constants. The effects of surface modification on finite superlattices are also studied numerically,

1. Introduction

In the past few years, there has been growing interest in the magnetic properties of both
naturally and artificially layered structures, especially in the nature of spin waves, giant
magnetoresistance and critical phenomena {for a review, see [1]). With the advance of
modern vacuum science, in particular the epitaxial growth technique, it is now possible to
grow very thin films of predetemined thickness, even of a few monolayers. Superlattice
structures composed of two different ferromagnetic layers (Fe/Co, Fe/Cr, Fe/Ni, Co/Cr,
Dy/Gd, ete) have already been artificially fabricated. The critical properties of such systems
have been studied, either experimentally [2-5] or theoretically [6—12]. Camley and Tilley [8]
have calculated the critical temperature in the same superlattice using the Ginzburg-Landau
formalism. Hinchey and Mills {6] have used a localized spin model in the investigation of a
superlattice composed of alternating ferromagnetic and antiferromagnetic layers. Recently
Sy and Ow [10] studied the phase transitions in an alternating magnetic superlattice using
the Ising model in the mean-field approximation. -

We study in this article the critical properties of a magnetic superlattice using the
differential operator technique within the effective-field theory with correlations. This
technique, first proposed by Honmura and Kaneyoshi [13], has been widely developed and
applied to various magnetic systems [14], including thin films and superlattices [15-18], and
it is believed to give more exact results compared to the standard mean-field approximation.
So, recently, using this method Hai et a! studied the critical temperature of a magnetic
slab as a function of slab thickness and surface exchange coupling [16], and the critical
behaviour of an infinite superlattice consisting of two different ferroniagnets [17].

In section 2 we present the model of the superlattice and derive the equation that
determines the transition temperature. In section 3 we apply the obtained formalism to
calculate the transition temperatures of an alternating superiattice with two layers in the unit
cell. We consider first an infinite superlattice, then a finite one and last  finite superlattice
with modified surface. Finally, the discussion and brief conclusion are given in section 4.
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2. Model and formalism

‘We consider a model of an infinite superlattice with the unit cell consisting of an arbitrary
number N of magnetic layers. Each magnetic layer j (f = 1, ..., N) contains n; atomic
layers. The same model of a magnetic superlattice was considered recently [12, 19] for
study of the bulk and surface spin-wave spectrum. The unit cell of the superlattice under
consideration is shown in figure 1.
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Figure 1. The unit cell of the superlattice consisting of N different ferromagnetic materials.
The same lattice parameter ¢ is assumed for all the materials and I = La is the superlattice
parameter. The layers are infinite in the directions perpendicular to the axis z.

The spin-L Ising Hamiltonian of the system is given by
2

H= E Z Jant SarSwr (1)

nn rr

where S, = =1 is the usual Ising variable, (n, #’) are plane indices and (r, r'} are different
sites of the plane. We will retain only nearest-neighbour (NN) terms. In (1), Ju is only
plane dependent, and in NN terms is given as

-l I

T =J9" KL+ ne+1<n<kL+ Y ng
o=i o=1
J,,,,H:{f“" KL+ SiZing +1<n SRL+ X gnp — 1
, JU,H-D n= k‘[’ + Zé:l ng

for j =1,..., N. Here L is the number of atomic layers in the unit cell and is defined as
L= 5_“,}":1 n;j, k is the index of the unit cell (£ =0, £1,42,... for an infinite system) and
j+1—1for j=N.

To evaluate the mean spin (S,.) we use the exact Callen identity {20]:

(Sor) = (tanh ( 2.2 Km.:sw)) @

where Ky; = J;;/ksT, and (...} indicates the usnal canonical ensemble average for a given
configuration of {J;;}. For derivation of the right-hand side of expression (2) we use the
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differential operator technique [13]. Now we introduce the differential operator D = 8/6x
and recall that the displacement operator exp(aD) satisfies the relation

exp(eD) f(x) = f{x + ). 3

Then equation (2) can be rewritten with the help of equation (3) as

(Sar) = (exp ( 2.2 Knnrsnffn))tanh(x)

o

x=0

4

. = (l—[ H[COSh(Knn-’D) + Sl‘l"r' Sillh(Knn'D)]) ta.nh(x)

x=0

On tbe right-hand side of equation (4) we have obtained the multi-spin correlation function,
which must be decoupled. We follow the Kaneyoshi decoupling approximation [21]

(r1xz .. X = {x1){x2) . . {xa).

Then, as {S,,} is independent of r, we introduce the mean atomic magnetization of the
nth layer m, = (5,,). Hence equation (4) in NN approximation and iz terms of m, reduces
to

m, = [cosh(Kp,D) + m,, sinh(K,,D})*[cosh(K,; »—1D) + my—1 sinh(K; n1 D)
X [C‘;OSh(K,,_,,.I_;D) + Mu+1 Sillh(Kn,n+lD)]z tanh(x)|x=0 (5)

where n =1, ..., L, and zo and z are the numbers of nearest neighbours in the plane and
between adjacent planes, respectively (zo = 4, z = 1 in the case of a simple cubic lattice;
zZp = 6, z = 1 for a hexagonal lattice; zp = 3, z = 1 for a honeycomb lattice; etc). Since
the periodic condition of the superlattice is satisfied, we have mg = my and my. = my.
So we have a set of L coupled equations for m,, ma, ..., mr. The magnetization in the nth
layer, m,, depends on the magnetizations in adjacent (# -~ 1)th and (n — 1}th layers and via
these on exchange couplings in these layers. We can see that, in general, owing to interface
effects, the magnetizations in »; atomic layers of magnetic layer j are not the same.

As the temperature becomes higher than the critical temperature T, the whole system
becomes demagnetized and the mean atomic magnetization in every layer approaches zero.
Using this condition we can determine T;. Hence, all terms of order higher than linear in
equation (5) can be neglected. This leads to a set of L linear simultaneous equations:

My = 20Anntty + ZApn-1Mn-1 + ZAn ne 1M1 (6)
where n = 1, ..., L, and coefficients {A} are given by
Ann = c0sh® 1 (X,;,D) sith(K s D) cosh? (K p n_1 D) cosh? (K, n—1D) tanh(x) [z=o (7a)
Ap a1 = cosh® 1 (K, 51 D) sinh(K 1D} cosh® (K D) cosh® (K, n41D) tanh(x)|c=0  (7b)
Appi1 = coshz"l(K,,.,,.,,.lD) sinh(Kp ;4.1D) cosh® (K, D) cosh®* (K, ,—1 D) tanh(x));— (7¢).
The set of linear equations {6) can be rewritten in matrix form:

Bm =0 ®



9624 Y M Seidov and G R Shaulov
where
Byj = (1 — zoAyj)8ij ~ 2Aii(Si j—1 + 8t j+1)- (9)
The secular equation of the set of coupled equations (6) is
1—2z0411 —zAn —zAyg
—z421 1 —204n
e . ={. (10)

1 —29Ap-10-1 —2Ar1,1
—ZArt e - —ZALL-1 1—zArL

From the numerical calculation of equation (10) we can determine the critical temperature

T, for a given configuration of exchange constants {J;;} and superlattice structure (zg, z).
Thus the formalism we have obtained is general and applicable for an arbitrary superlattice.

3. Superlattice with two layers in the unit cefl

3.1. Infinite lattice

INow let us apply the obtained formalism to a superlattice where the adjacent layers consist
of atoms of two different magnetic materials & and B and alternate as ... ABABA. ... The
exchange coupling constant between the NN spins in A (B) is denoted by J, (Jy), while Jy,
stands for the exchange coupling between the NN spins across the interface. Let us assume
that the superlattice is infinite and has a simple cubic structure (zg = 4, z = 1). Since the
unit cell includes only two layers, we have two different mean magnetizations, m, for layers
A and my, for layers B. Evidently, for arbitrary #, the relation m,_) = m,4 is satisfied.
Hence the set of equations (6) has the form

my = 4Am, + 2A My (11a)
my = dAmtiy + 2Apaty (115)
where the coefiicients {A} majf be obtained with the help of equations (7):

Ana(Ka Kp) = [tanh(4 K, + 2Kap) + tanh(4 K, — 2K} + 2 tanh(2K, + 2K )

+ 2tanh (2K, — 2Ky) + 2 tanh(4 K,) + 4 tanh(2K,)1/32 (12a)
Ap(Ka, Kip) = [tanh(4 K, + 2K5) — tanh{(4K, — 2Ky) + 4 tanh(2K, + 2K )

— 4tanh(2K, — 2K ) + 6tanh(2K,,)] /32 (125)
App (K, Kap) = Aaa(Ka = Kb, Kap) (120
Ava(Kp, Kab) = Am(Ka = Kp, K} (12d)

The set of equations (11) reduces to the secular equation

24y L—dAw| =" (13)
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From the nuwmerical calculation of secular equation (13) we can determine the critical
temperature of the infinite alternating superlattice as a function of J,, Jy, and Jyp. Let
us assume that J; > J, and hence T® > T®, where T® = 5.073J,/kg is the bulk critical
temperature of a uniform lattice of material A and T“’:' (Jo/ F)T. Then we take J,
as the unit of energy. In figure 2 we show the dependence of the critical temperature
T; on interlayer exchange constant Jy, for varipus values of J,. It is easy to see that
this dependence is approximately linear in agreement with results of other methods [9-
11%. It is interesting to note that, for every choice of J, and J,, there exists some critical
value of interface exchange constant .Iab such that, when Jp > J;g) and consequently
T. > T®, T®, the system may order in the interface layers before the intralayer ordering,
i.e. the interface magnetism dominates. For Jy < Jélf), T. < T®, 7O, we have the
contrary situation. Initially it has a place intralayer ordering, i.e. the intralayer magnetism
dominates and the system behaves like metamagnets. For the plots in figure 2 we obtained
the following critical values of J5: for (2) #, = 025/, and J = 1.33J,; for (b)
Jo =057, and J? = 1.227,; for (c) Jy = 0751, and JO = 1.11J,; for (d) J, = J, and
¥ A © - Jy. Recently Hai et af [17] considered a similar model of an infinite superlattice
consxstmg of two different ferromagncﬂc materials A and B, where each magnetic sublayer
contained several monolayers, and calculated the critical temperature as a function of
sublayer thicknesses. It was found also that there exists for each set of values of J,, J, and
number of layers some critical interface coupling J; f") that satisfies the same conditions as

Ja(,'f) introduced in the present work.

3.2. Finite lattice

Now we consider an alternating superlattice of finite thickness. In the case of the infinite
superlattice we restricted our discussion to one unit cell because of the periodic condition.
Now, taking into account the effects of finite thickness of our superfattice, we have to
consider all unit cells, because the periodicity is broken on the surface layers.

Let us assume that the lattice has 2 layers. Layers n = 0,2, ..., 2] — 2 are made up
of atoms of type A with Ju, whereas layers n = 1,3, ...,2] — 1 are made up of atoms of
type B with Jy. The exchange constant between all successive layers is given by J. Such
a type of superlattice was considered recently [10] in the mean-field approximation.

Therefore matrix equation (8) can be performed now as a set of 21 linear equations,
and m has 2! components, i.e. [ mean magnetizations m, and ! mean magnetizations mp.
Matrix B will have the form

1 —zpAm —ZAm
—zApe 1—z2pAw —zAp
By = (14)
—zApa 1204w
and the critical temperature T, is given as before by the determinant equation:
det By = 0. (15)

We can represent det By as

det Beay) = (2Aa)' (2 A0a)' Ca(T) (16)
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Figure 2. Dependence of critical temperature T on interface coupling Jyp for (2) J, = 0254,
) Jy = 0.5, (e} b = 0.75J; and (d) Jp, = J». The broken line shows the critical temperature
of a uniform lattice, kg T = 5.073, i.e. when Jy, = J; and Jop = J;.

where
xa _1
-1 Xy -1
Cy = -1 x -1 {17
=1 x denxq
and
Xa = (1 —2042)/(2Aw) Xp = (1 — zoAww)/(z Apa) (18)

where {A} are given in (12).
Now let us evaluate Cy. The determinant of such a symmetric tridiagonal matrix
satisfies the recurrence relation

Cy = (xaXy — 2)Cotz — Cots (19)
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and this difference equation has a solution [107:

Cy = (1/ sinh ¢p)}{sinh[(! + 1)}¢] + sinh{¢)} (20)
where

Xxp, — 2 = 2cosh ¢. 21}

If xaxp < 2 then ¢ = i6 and hyperbolic functions become trigonometric functions of 6.
According to (15) and (16) the critical temperature is given by:

Ca(T) =0. ' (22)

This equation has no solution for x,xp > 2. For x,xp < 2 the solution is 8 = 2z /(21 + 1)
and we have

XXy — 2 = 2cos[2r /(21 + D). (23)

From this equation we can obtain the dependence of critical temperature 7. on
superlattice thickness (thickness is measured in units of the lattice constant in our
calculations). Such dependence is shown in figure 3 for simple cubic structure and for
two cases: J, = 0.5/, Jop =051, and K, = 0.57,, Jp, = 2J,. In figure 3 we can see that,
for I - o0, T approaches the bulk critical temperature of the infinite superlattice. Notice
that the bulk values of kg7/J,, ie. (@) 3.84 and (b) 6.03, are reached very rapidly with
small /, and curve (a) approaches its limiting value faster than curve (b). It is easy to see
also that for ! — oo (infinite lattice) equation (23) is equivalent to equation (13).

3.3. Finite lattice with modified surface layers

Finally, let us consider a finite lattice when the magnetic properties of the surface differ
from those in the bulk. This is expected since the atoms at the surface are in a different
environment, and the interaction (exchange constants) associated with them may differ
from those in the bulk. The effects of surface magnetism have been the subject of many
investigations (for a review, see [22]) in recent years.

We consider the simplest model of surface modification. Let us assume that only for the
first surface (top and bottom) layers the exchange constant differs from that in the bulk, i.e.
forn =0wehave Jy % J,and for n = 2{ —1 we have Jy # Jp; layersn =2,4,...,20 -2
are composed of atorns A with J,, and layers n == 1,3, ..., 2] — 3 are composed of atoms
B with J,. The exchange constant between all successive layers is given by Jy.

In this case equation (16) has the form

detBY) = (zAw) (zAw) CH(T) ' (24)
where
X0 -1
-1 x -1
cP = -1 x -1 (25)

=1 xo0 l@nxc
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Figure 3. Dependence of critical temperature T, on thickness for (a) Jy = 0.5/, -Ial:; =2J;
and (b} Jp = 0.5Jy, Jop = 0.5.J;.

and where xg and xgo differ from x, and xp by putting Jo instead of J, and Joo instead of
Jy, respectively, in expressions (12}.
Expanding the determinant CS about the first and last rows we can write

€S = [xoxg0 — (to/%a + %00/%5)1Ca—2 + [1 — (0/%a + Xo0/%6)]Ca—s (26)

where Co is given in (20).
From the condition of critical temperature derivation

cT) =0 (27)
we can numerically caleulate T, for various values of J;, Jy, Jus, Jo and Joo and the number
of layers 2I. For simplicity we have chosen

Jo=c¢Jy Joo=che (28}

where ¢ is the single modification parameter (¢ = 1 is our simpie alternating superlattice).

In figures 4 and 5 we have plotted critical temperature T, versus ¢ for two cases:
B = 0.5J,, Jip = 0.5],, and J, = 0.5/;, Jap = 2J,, respectively. The results are shown
for simple cubic structure and for various numbers of layers. Notice that the dependence
of 7, on the layer thickness is significant only for small ¢.
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Figure 4, Dependence of critical temperature . on ¢ for J, = 0.5J, Jop = 0.5/, and for
{a) six, (b) ten and (c) an infinite number of layers.

4, Conclusion

We have examined a spin—% Ising model of a magnetic superlattice. The formalism of
transition ternperature derivation obtained above is universal and can be used for study of
a superlattice of various thicknesses and structures. The authors are presently working on
extension and application of this formalism to more complicated models: a superlattice with
several monolayers in a magnetic layer, a superlattice with impurity layers, a superlattice
in transverse applied field, and so on. The more complex the model, the more complicated
are the computer calculations required.

Although we have considered a superlattice with only ferromagnetic exchange (all
J > (), the formulation is also applicable for antiferromagnetic coupling (some or all
J < 0). It is easy to see, for example, that, if exchange interactions between the successive
layers are antiferromagnetic (i.e. we have to replace Ky, by —Kjp in expressions (15)), the
values of T, are not changed, which is consistent with the discussion in [9].

In this paper we also introduce some critical value of interlayer exchange constant J;;')

so that for Jgp > J. (c) (Jip < T, (c)) the interlayer (intralayer} ordering dominates.
Although superlatnccs of alternating magnetic monolayers have not been studied
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Figure 5. Dependence of critical temperature 7;; on ¢ for Ji, = 0.5/, Jop = 2.J; and for (a) six,

(b} ter and (¢} an infinite number of layers.

experimentally yet, it is expected that such systems can be fabricated in the near future, and
a possible candidate is a structure with alternating Fe and Co monolayers. Investigation
of the transition temperatures on magnetic superlattices in which the atoms vary from one
monolayer to another will be most useful and enlightening.
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